Question	1	Answer		Guidance		
1	<i>y</i> =	$e^{2x}\cos x$	M1	product rule used	consistent with their derivs	
	\Rightarrow	$dy/dx = 2e^{2x}\cos x - e^{2x}\sin x$	A1	cao – mark final ans	e.g. $2e^{2x} - e^{2x} \tan x$ is A0	
	dy/	$dx = 0 \Rightarrow e^{2x}(2\cos x - \sin x) = 0$	M1	their derivative $= 0$		
	\Rightarrow	$2\cos x = \sin x$				
	\Rightarrow	$2 = \sin x / \cos x = \tan x$	M1	$\sin x / \cos x = \tan x$ used	or $\sin^2 x + \cos^2 x = 1$ used	
	\Rightarrow	<i>x</i> = 1.11	A1	1.1 or 0.35π or better, or arctan 2, not 63.4° but condone ans given in both degrees and radians here	1.1071487, 0.352416 π , penalise incorrect rounding	
	\Rightarrow	<i>y</i> = 4.09	Alcao	art 4.1	no choice	
			[6]			

2		$y = \ln(1 - \cos 2x)$, let $u = 1 - \cos 2x$	M1	$1/(1 - \cos 2x)$ soi	
		$\Rightarrow dy/dx = dy/du \cdot du/dx$			
		$= (1/u). 2\sin 2x$	M1	$d/dx (1 - \cos 2x) = \pm 2\sin 2x$	
		$2\sin 2x$	Alcao		
		$-\frac{1-\cos 2x}{1-\cos 2x}$			
		When $r = \pi/6$ $\frac{dy}{dy} = 2\sin(\pi/3)$	M1	substituting $\pi/6$ or 30° into their deriv	must be in at least two places
		$\frac{dx}{dx} = \frac{1}{1 - \cos(\pi/3)}$			
		$=2\sqrt{3}$	Alcao		isw after correct answer seen
			[5]		

C	Question		er	Marks	Guidance		
3	(i)		$y = e^{-x} \sin 2x$	M1	Product rule	$u \times \text{their } v' + v \times \text{their } u'$	
			$\Rightarrow dy/dx = e^{-x} \cdot 2\cos 2x + (-e^{-x})\sin 2x$	B1	$d/dx(\sin 2x) = 2\cos 2x$		
				A1	Any correct expression	but mark final answer	
				[3]			
	(ii)		$dy/dx = 0 \text{ when } 2\cos 2x - \sin 2x = 0$	M1	ft their dy/dx but must eliminate e^{-x}	derivative must have 2 terms	
			\Rightarrow 2 = tan 2x	M1	$\sin 2x / \cos 2x = \tan 2x \text{ used}$	substituting ¹ / ₂ arctan 2 into their deriv M0	
			\Rightarrow 2x = arctan 2		$[\text{or tan}^{-1}]$	(unless $\cos 2x = 1/\sqrt{5}$ and $\sin 2x = 2/\sqrt{5}$ found)	
			\Rightarrow x = 1/2 arctan 2 *	A1	NB AG	must show previous step	
				[3]			

4	(i)	translation in the <i>x</i> -direction	M1	allow 'shift', 'move'	If just vectors given withhold one 'A' mark only
		of $\pi/4$ to the right	A1	oe (eg using vector)	'Translate $\binom{\pi/4}{1}$ ' is 4 marks; if this is followed by an additional incorrect transformation, SC M1M1A1A0
		translation in y-direction	M1	allow 'shift', 'move'	$\begin{pmatrix} \pi/4\\1 \end{pmatrix}$ only is M2A1A0
		of 1 unit up.	A1	oe (eg using vector)	
			[4]		

Q	Question		n Answer Marks		Guidance	
4	(ii)		$g(x) = \frac{2\sin x}{\sin x + \cos x}$			(Can deal with num and denom separately)
			$g'(x) = \frac{(\sin x + \cos x)2\cos x - 2\sin x(\cos x - \sin x)}{(\sin x + \cos x)^2}$	M1	Quotient (or product) rule consistent with their derivs	$\frac{vu'-uv'}{v^2}$; allow one slip, missing brackets
			$=\frac{2\sin x \cos x + 2\cos^2 x - 2\sin x \cos x + 2\sin^2 x}{(\sin x + \cos x)^2}$	A1	Correct expanded expression (could leave the '2' as a factor)	$\frac{uv'-vu'}{v^2}$ is M0. Condone $\cos x^2$, $\sin x^2$
			$=\frac{2\cos^2 x + 2\sin^2 x}{(\sin x + \cos x)^2} = \frac{2(\cos^2 x + \sin^2 x)}{(\sin x + \cos x)^2}$			
			$=\frac{2}{\left(\sin x + \cos x\right)^2} *$	A1	NB AG	must take out 2 as a factor or state $sin^2x + cos^2x = 1$
			When $x = \pi/4$, g '($\pi/4$) = 2/($1/\sqrt{2} + 1/\sqrt{2}$) ²	M1	substituting $\pi/4$ into correct deriv	
			= 1	A1		
			$f'(x) = \sec^2 x$	M 1	o.e., e.g. $1/\cos^2 x$	
			f '(0) =sec ² (0) = 1, [so gradient the same here]	A1		
				[7]		

Question	er	Marks		Guidance		
4 (iii)	$\int_{0}^{\pi/4} f(x) \mathrm{d} x = \int_{0}^{\pi/4} \frac{\sin x}{\cos x} \mathrm{d} x$					
	let $u = \cos x$, $du = -\sin x dx$					
	when $x = 0$, $u = 1$, when $x = \pi/4$, $u = 1/\sqrt{2}$					
	$=\int_{1}^{1/\sqrt{2}}-\frac{1}{u}\mathrm{d}u$	M1	substituting to get $\int -1/u (du)$	ignore limits here, condone no du but not dx allow $\int 1/u$ du		
	$=\int_{1/\sqrt{2}}^{1}\frac{1}{u}\mathrm{d}u *$	A1	NB AG	but for A1 must deal correctly with the –ve sign by interchanging limits		
	$= \left[\ln u\right]_{1/\sqrt{2}}^{1}$	M 1	[ln <i>u</i>]			
	$= \ln 1 - \ln (1/\sqrt{2})$					
	$= \ln \sqrt{2} = \ln 2^{1/2} = \frac{1}{2} \ln 2$	A1	$\ln \sqrt{2}$, $\frac{1}{2} \ln 2$ or $-\ln(1/\sqrt{2})$	mark final answer		
		[4]				
(iv)	Area = area in part (iii) translated up 1 unit.	M1	soi from $\pi/4$ added	or		
	So = $\frac{1}{2} \ln 2 + 1 \times \frac{\pi}{4} = \frac{1}{2} \ln 2 + \frac{\pi}{4}$.	A1cao	oe (as above)	$\int_{\pi/4}^{\pi/2} (1 + \tan(x - \pi/4)) dx = [x + \ln \sec(x - \pi/4)]_{\pi/4}^{\pi/2}$		
		[2]		$=\pi/2 + \ln\sqrt{2} - \pi/4 = \pi/4 + \ln\sqrt{2}$ B2		

Question	Answer	Marks		Guidance
5	$y = x^2 \tan 2x$	M1	product rule	$u \times \text{their } v' + v \times \text{their } u' \text{attempted}$
		M1	$d/du(\tan u) = \sec^2 u \sin^2 u$	M0 if d/dx (tan $2x$) =(2) sec ² x
	$\Rightarrow dy/dx = 2x^2 \sec^2 2x + 2x \tan 2x$	A1cao	or $2x^2/\cos^2 2x + 2x\tan 2x$	isw
	OR $y = x^2 \frac{\sin 2x}{\cos 2x}$ $\frac{dy}{dx} = x^2 \frac{\cos 2x \cdot 2 \cos 2x - \sin 2x(-2\sin 2x)}{\cos^2 2x} + 2x \frac{\sin 2x}{\cos 2x}$	M1 A1	product rule correct expression	see additional notes for complete solution $u \times \text{their } v' + v \times \text{their } u' \text{attempted}$
	$= \dots = 2x^2 \sec^2 2x + 2x \tan 2x$ OR $y = \frac{x^2 \sin 2x}{\cos 2x}$ $\frac{dy}{dx} = \frac{\cos 2x(2x \sin 2x + x^2 2 \cos 2x) - 2x^2 \sin 2x(-\sin 2x)}{\cos^2 2x}$	A1cao M1 A1 A1cao	or $2x^2/\cos^2 2x + 2x\tan 2x$ (isw) quotient rule correct expression or $2x^2/\cos^2 2x + 2x\tan 2x$ (isw)	or $(2x^2 + 2x\sin 2x\cos 2x)/\cos^2 2x$ or $2x^2/\cos^2 2x + 2x\sin 2x / \cos 2x$ see additional notes for complete solution $(v \times \text{their } u' - u \times \text{their } v')/v^2$ attempted
	$-\ldots - 2\lambda$ SEC $2\lambda + 2\lambda$ tall 2λ	[3]		or $(2x^2 + 2x\sin 2x\cos 2x)/\cos^2 2x$ or $2x^2/\cos^2 2x + 2x\sin 2x / \cos 2x$

6	$y = \sqrt[3]{1 + x^2} = (1 + x^2)^{1/3}$	M1	$(1+x^2)^{1/3}$	Do not allow MR for square root
		M1	chain rule	their dy/du \times du/dx (available for wrong indices)
\Rightarrow	$\frac{dy}{dt} = \frac{1}{2}(1+x^2)^{-3}.2x$	B1	$(1/3) u^{-2/3}$ (soi)	no ft on ½ index
	$\frac{dx}{dx} = \frac{2}{3}x(1+x^2)^{-\frac{2}{3}}$	A1 [4]	cao, mark final answer	oe e.g. $\frac{2x(1+x^2)^{-\frac{2}{3}}}{3}$, $\frac{2x}{3\sqrt[3]{(1+x^2)^2}}$, etc but must combine 2 with 1/3.

7	$y = x^2 (1 + 4x)^{1/2}$			
⇒	$\frac{dy}{dt} = x^2 \frac{1}{2} (1+4x)^{-1/2} 4 + 2x(1+4x)^{1/2}$	M1	product rule with $u = x^2$, $v = \sqrt{1 + 4x}$	consistent with their derivatives; condone wrong index in v used
	dx = 2	B1	$\frac{1}{2}()^{-1/2}$ soi	for M1 only
		A1	correct expression	
	$= 2x(1+4x)^{-1/2}(x+1+4x)$	M1	factorising or combining fractions	(n_{1}, n_{2}, n_{3}) and not factor out the (n_{1}) must have evidence of $n_{1} + 1 + 4n_{3}$
	2x(5x+1) *	A1	NB AG	(need not factor out the $2x$) must have evidence of $x + 1 + 4x$ oe
	$=\frac{-1}{\sqrt{1+4x}}$	[5]		or $2x(5x+1)(1+4x)^{-72}$ or $2x(5x+1)/(1+4x)^{72}$