Question		Answer$\begin{aligned} & y=\mathrm{e}^{2 x} \cos x \\ & \Rightarrow \quad \mathrm{~d} y / \mathrm{d} x=2 \mathrm{e}^{2 x} \cos x-\mathrm{e}^{2 x} \sin x \\ & \mathrm{~d} y / \mathrm{d} x=0 \Rightarrow \mathrm{e}^{2 x}(2 \cos x-\sin x)=0 \\ & \Rightarrow \quad 2 \cos x=\sin x \\ & \Rightarrow \quad 2=\sin x / \cos x=\tan x \\ & \Rightarrow \quad x=1.11 \\ & \Rightarrow \quad y=4.09 \end{aligned}$	Marks M1 A1 M1 M1 A1 A1cao [6]	Guida	
1				product rule used cao - mark final ans their derivative $=0$ $\sin x / \cos x=\tan x \text { used }$ 1.1 or 0.35π or better, or $\arctan 2$, not 63.4° but condone ans given in both degrees and radians here art 4.1	consistent with their derivs e.g. $2 \mathrm{e}^{2 x}-\mathrm{e}^{2 x} \tan x$ is A0 or $\sin ^{2} x+\cos ^{2} x=1$ used $1.1071487 \ldots, 0.352416 \ldots \pi$, penalise incorrect rounding no choice

Question		er	Marks	Guidance	
3	(i)	$\begin{aligned} & y=\mathrm{e}^{-x} \sin 2 x \\ & \Rightarrow \quad \mathrm{~d} y / \mathrm{d} x=\mathrm{e}^{-x} \cdot 2 \cos 2 x+\left(-\mathrm{e}^{-x}\right) \sin 2 x \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Product rule $\mathrm{d} / \mathrm{d} x(\sin 2 x)=2 \cos 2 x$ Any correct expression	$u \times \text { their } v^{\prime}+v \times \text { their } u^{\prime}$ but mark final answer
	(ii)	$\begin{aligned} & \mathrm{d} y / \mathrm{d} x=0 \text { when } 2 \cos 2 x-\sin 2 x=0 \\ & \Rightarrow \quad 2=\tan 2 x \\ & \Rightarrow \quad 2 x=\arctan 2 \\ & \Rightarrow \quad x=1 / 2 \arctan 2 * \end{aligned}$	M1 M1 A1 [3]	ft their $\mathrm{d} y / \mathrm{d} x$ but must eliminate e^{-x} $\sin 2 x / \cos 2 x=\tan 2 x$ used [or $\tan ^{-1}$] NB AG	derivative must have 2 terms substituting $1 / 2$ arctan 2 into their deriv M0 (unless $\cos 2 x=1 / \sqrt{5}$ and $\sin 2 x=2 / \sqrt{ } 5$ found) must show previous step

Question		Answer	Marks		Guidance
4	(ii)	$\begin{aligned} & g(x)=\frac{2 \sin x}{\sin x+\cos x} \\ & g^{\prime}(x)=\frac{(\sin x+\cos x) 2 \cos x-2 \sin x(\cos x-\sin x)}{(\sin x+\cos x)^{2}} \\ & =\frac{2 \sin x \cos x+2 \cos ^{2} x-2 \sin x \cos x+2 \sin ^{2} x}{(\sin x+\cos x)^{2}} \\ & =\frac{2 \cos ^{2} x+2 \sin ^{2} x}{(\sin x+\cos x)^{2}}=\frac{2\left(\cos ^{2} x+\sin ^{2} x\right)}{(\sin x+\cos x)^{2}} \\ & =\frac{2}{(\sin x+\cos x)^{2}} * \end{aligned}$ When $x=\pi / 4, g^{\prime}(\pi / 4)=2 /(1 / \sqrt{ } 2+1 / \sqrt{ } 2)^{2}$ $=1$ $\mathrm{f}^{\prime}(x)=\sec ^{2} x$ $\mathrm{f}^{\prime}(0)=\sec ^{2}(0)=1$, [so gradient the same here]	M1 A1 A1 M1 A1 M1 A1 [7]	Quotient (or product) rule consistent with their derivs Correct expanded expression (could leave the ' 2 ' as a factor) NB AG substituting $\pi / 4$ into correct deriv o.e., e.g. $1 / \cos ^{2} x$	(Can deal with num and denom separately) $\frac{v u u^{\prime}-u v^{\prime}}{v^{2}}$; allow one slip, missing brackets $\frac{u v^{\prime}-v u^{\prime}}{v^{2}}$ is M0. Condone $\cos x^{2}, \sin x^{2}$ must take out 2 as a factor or state $\sin ^{2} x+\cos ^{2} x=1$

Question		er	Marks		Guidance
4	(iii)	$\int_{0}^{\pi / 4} \mathrm{f}(x) \mathrm{d} x=\int_{0}^{\pi / 4} \frac{\sin x}{\cos x} \mathrm{~d} x$ let $u=\cos x, \mathrm{~d} u=-\sin x \mathrm{~d} x$ when $x=0, u=1$, when $x=\pi / 4, u=1 / \sqrt{ } 2$ $\begin{aligned} & =\int_{1}^{1 / \sqrt{2}}-\frac{1}{u} \mathrm{~d} u \\ & =\int_{1 / \sqrt{2}}^{1} \frac{1}{u} \mathrm{~d} u^{*} \\ & =[\ln u]_{1 / \sqrt{2}}^{1} \\ & =\ln 1-\ln (1 / \sqrt{ } 2) \\ & =\ln \sqrt{2}=\ln 2^{1 / 2}=1 / 2 \ln 2 \end{aligned}$	M1 A1 M1 A1 [4]	substituting to get $\int-1 / u(\mathrm{~d} u)$ NB AG [$\ln u$] $\ln \sqrt{ } 2,1 / 2 \ln 2$ or $-\ln (1 / \sqrt{ } 2)$	ignore limits here, condone no $\mathrm{d} u$ but not $\mathrm{d} x$ allow $\int 1 / u$.- $\mathrm{d} u$ but for A1 must deal correctly with the -ve sign by interchanging limits mark final answer
	(iv)	Area $=$ area in part (iii) translated up 1 unit. $\text { So }=1 / 2 \ln 2+1 \times \pi / 4=1 / 2 \ln 2+\pi / 4 \text {. }$	M1 A1cao [2]	soi from $\pi / 4$ added oe (as above)	or $\begin{aligned} & \int_{\pi / 4}^{\pi / 2}(1+\tan (x-\pi / 4)) \mathrm{d} x=[x+\ln \sec (x-\pi / 4)]_{\pi / 4}^{\pi / 2} \\ & =\pi / 2+\ln \sqrt{2}-\pi / 4=\pi / 4+\ln \sqrt{2} \text { B2 } \end{aligned}$

$\begin{array}{ll} 6 & y=\sqrt[3]{1+x^{2}}=\left(1+x^{2}\right)^{1 / 3} \\ \Rightarrow \quad \frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{1}{3}\left(1+x^{2}\right)^{-\frac{2}{3}} \cdot 2 x \\ & =\frac{2}{3} x\left(1+x^{2}\right)^{-\frac{2}{3}} \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { [4] } \end{aligned}$	$\left(1+x^{2}\right)^{1 / 3}$ chain rule $(1 / 3) u^{-2 / 3}$ (soi) cao, mark final answer	Do not allow MR for square root their $\mathrm{d} y / \mathrm{d} u \times \mathrm{d} u / d x$ (available for wrong indices) no ft on $1 / 2$ index oe e.g. $\frac{2 x\left(1+x^{2}\right)^{-\frac{2}{3}}}{3}, \frac{2 x}{3 \sqrt[3]{\left(1+x^{2}\right)^{2}}}$, etc but must combine 2 with $1 / 3$.

$\begin{aligned} & 7 \quad \begin{aligned} y & =x^{2}(1+4 x)^{1 / 2} \\ \Rightarrow \quad \frac{\mathrm{~d} y}{\mathrm{~d} x} & =x^{2} \cdot \frac{1}{2}(1+4 x)^{-1 / 2} \cdot 4+2 x(1+4 x)^{1 / 2} \\ & =2 x(1+4 x)^{-1 / 2}(x+1+4 x) \\ & =\frac{2 x(5 x+1)}{\sqrt{1+4 x}} * \end{aligned} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [5] } \end{aligned}$	product rule with $u=x^{2}, v=\sqrt{ }(1+4 x)$ $1 / 2(\ldots)^{-1 / 2}$ soi correct expression factorising or combining fractions NB AG	consistent with their derivatives; condone wrong index in v used for M1 only (need not factor out the $2 x$) must have evidence of $x+1+4 x$ oe or $2 x(5 x+1)(1+4 x)^{-1 / 2}$ or $2 x(5 x+1) /(1+4 x)^{1 / 2}$

